A new approach to analyse longitudinal epidemiological data with an excess of zeros
نویسندگان
چکیده
BACKGROUND Within longitudinal epidemiological research, 'count' outcome variables with an excess of zeros frequently occur. Although these outcomes are frequently analysed with a linear mixed model, or a Poisson mixed model, a two-part mixed model would be better in analysing outcome variables with an excess of zeros. Therefore, objective of this paper was to introduce the relatively 'new' method of two-part joint regression modelling in longitudinal data analysis for outcome variables with an excess of zeros, and to compare the performance of this method to current approaches. METHODS Within an observational longitudinal dataset, we compared three techniques; two 'standard' approaches (a linear mixed model, and a Poisson mixed model), and a two-part joint mixed model (a binomial/Poisson mixed distribution model), including random intercepts and random slopes. Model fit indicators, and differences between predicted and observed values were used for comparisons. The analyses were performed with STATA using the GLLAMM procedure. RESULTS Regarding the random intercept models, the two-part joint mixed model (binomial/Poisson) performed best. Adding random slopes for time to the models changed the sign of the regression coefficient for both the Poisson mixed model and the two-part joint mixed model (binomial/Poisson) and resulted into a much better fit. CONCLUSION This paper showed that a two-part joint mixed model is a more appropriate method to analyse longitudinal data with an excess of zeros compared to a linear mixed model and a Poisson mixed model. However, in a model with random slopes for time a Poisson mixed model also performed remarkably well.
منابع مشابه
Semiparametric analysis of longitudinal zero-inflated count data
Background: The instrumental activities of daily living (IADLs) are important index of physical functioning in older adult studies. These count outcomes with a large proportion of zeros are often collected in longitudinal studies. Data were from the Hispanic Established Population for Epidemiological Study of the Elderly (HEPESE), a four wave (seven years) longitudinal study of community-dwelli...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملSpatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros
Epidemiological data often include excess zeros. This is particularly the case for data on rare conditions, diseases that are not common in specific areas or specific time periods, and conditions and diseases that are hard to detect or on the rise. In this paper, we provide a review of methods for modeling data with excess zeros with focus on count data, namely hurdle and zero-inflated models, ...
متن کاملFuzzy Data Envelopment Analysis Approach for Ranking of Stocks with an Application to Tehran Stock Exchange
The main goal of this paper is to propose a new approach for efficiency measurement and ranking of stocks. Data envelopment analysis (DEA) is one of the popular and applicable techniques that can be used to reach this goal. However, there are always concerns about negative data and uncertainty in financial markets. Since the classical DEA models cannot deal with negative and imprecise values, i...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013